
LabVIEW™

DASYLab to LabVIEW
Migration Guide

DASYLab to LabVIEW Migration Guide

June 1999 Edition
Part Number 322221A-01

Worldwide Technical Support and Product Information

www.natinst.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 794 0100

Worldwide Offices

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 284 5011,
Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, China 0755 3904939, Denmark 45 76 26 00,
Finland 09 725 725 11, France 01 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186,
India 91805275406, Israel 03 6120092, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456,
Mexico (D.F.) 5 280 7625, Mexico (Monterrey) 8 357 7695, Netherlands 0348 433466, Norway 32 27 73 00,
Singapore 2265886, Spain (Madrid) 91 640 0085, Spain (Barcelona) 93 582 0251, Sweden 08 587 895 00,
Switzerland 056 200 51 51, Taiwan 02 2377 1200, United Kingdom 01635 523545

For further support information, see the Technical Support Resources appendix. To comment on the
documentation, send e-mail to techpubs@natinst.com.

© Copyright 1999 National Instruments Corporation. All rights reserved.

 Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced
by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do not
execute programming instructions if National Instruments receives notice of such defects during the warranty period.
National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside
of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs
of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully
reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves
the right to make changes to subsequent editions of this document without prior notice to holders of this edition. The
reader should consult National Instruments if errors are suspected. In no event shall National Instruments be liable for
any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS
ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED
BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE
CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS,
OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of
National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence.
Any action against National Instruments must be brought within one year after the cause of action accrues. National
Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty
provided herein does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to follow
the National Instruments installation, operation, or maintenance instructions; owner’s modification of the product;
owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties,
or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical,
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without
the prior written consent of National Instruments Corporation.

Trademarks
HiQ™, LabVIEW™, natinst.com™, National Instruments™, and NI-DAQ™ are trademarks of National Instruments
Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS
National Instruments products are not designed with components and testing for a level of reliability suitable for use in
or in connection with surgical implants or as critical components in any life support systems whose failure to perform
can reasonably be expected to cause significant injury to a human. Applications of National Instruments products
involving medical or clinical treatment can create a potential for death or bodily injury caused by product failure, or by
errors on the part of the user or application designer. Because each end-user system is customized and differs from
National Instruments testing platforms and because a user or application designer may use National Instruments products
in combination with other products in a manner not evaluated or contemplated by National Instruments, the user or
application designer is ultimately responsible for verifying and validating the suitability of National Instruments products
whenever National Instruments products are incorporated in a system or application, including, without limitation,
the appropriate design, process and safety level of such system or application.

© National Instruments Corporation v DASYLab to LabVIEW Migration Guide

Contents

About This Manual
Conventions Used in This Manual...ix
Related Documentation..x

Chapter 1
Introduction to DASYLab and LabVIEW

Installation ...1-1
DASYLab to LabVIEW Migration Toolkit ..1-2

Comparison of DASYLab and LabVIEW ...1-2
Virtual Instruments ..1-3

SubVIs ...1-4
Front Panel...1-5

Tools..1-6
Controls and Indicators ...1-6

Block Diagram...1-8
Running a VI..1-8
LabVIEW Terminology...1-9

Chapter 2
LabVIEW Programming

Data Types ...2-1
Data Type Conversion...2-2
Polymorphism..2-2
Simple Data Types ..2-2
Arrays ..2-3
Clusters ..2-3

Graphs ...2-4
Enumerations...2-4
Paths and Reference Numbers...2-5

Programming Structures ..2-5
While Loop..2-6
For Loop ..2-7

Indexing ..2-8
Case Structure..2-8
Sequence Structure ..2-9

Local and Global Variables ...2-10
Local Variables..2-10
Global Variables..2-10

Contents

DASYLab to LabVIEW Migration Guide vi www.natinst.com

Chapter 3
Migrating from DASYLab to LabVIEW

Basics of Converting a Program.. 3-1
DASYLab Experiment Execution... 3-2
Passing DASYLab Data Blocks.. 3-3

Error Cluster ... 3-5
Input/Output Operations ... 3-6
Data Acquisition ... 3-6

Simple LabVIEW DAQ Applications .. 3-7
Converting DASYLab Diagram Flow Control to LabVIEW.. 3-8

Continuous Data Processing—Shift Registers.. 3-8
Example: Calculating the Running Maximum of a Signal............... 3-8

Triggering.. 3-10
Data Acquisition Triggering ... 3-10

Program Flow Control.. 3-11
Printing.. 3-11
Report Generation ... 3-12
File I/O .. 3-12
Messages ... 3-13
Actions .. 3-13
Network Control and Interaction .. 3-13
Multiple Layouts and Window Arrangements.. 3-14

LabVIEW Tools Beyond DASYLab... 3-14
Menu Bars ... 3-14
Open Network Communication .. 3-15
ActiveX Controls .. 3-15
DLLs ... 3-16
Instrument Drivers .. 3-16

Appendix A
DASYLab File I/O Functions

Appendix B
Technical Support Resources

Glossary

Contents

© National Instruments Corporation vii DASYLab to LabVIEW Migration Guide

Figures
Figure 1-1. Reuse of Digital Thermometer VI as a SubVI in

Temperature Chart VI ...1-4
Figure 1-2. Controls and Indicators on the Front Panel and Block Diagram...........1-7

Figure 2-1. Bundling Data to a Waveform Cluster and Waveform Graph2-4
Figure 2-2. Example of an Enumerated Data Type..2-5
Figure 2-3. While Loop with Terminals ..2-6
Figure 2-4. Example of While Loop Used in an Application2-7
Figure 2-5. For Loop with Terminals...2-7
Figure 2-6. Case Structures ..2-8
Figure 2-7. Sequence Structure with All Frames Shown...2-9

Figure 3-1. DASYLab Simple Generator Flowchart ...3-2
Figure 3-2. LabVIEW Simple Generator VI..3-2
Figure 3-3. Timescaled Waveform VI ...3-4
Figure 3-4. Timescaled Waveform VI with Added System Clock Time Stamp3-5
Figure 3-5. Applying Separate Scaling to Different Channels of Data....................3-5
Figure 3-6. Error Cluster and Set of File I/O VIs Using the Error Cluster3-6
Figure 3-7. Easy I/O DAQ Analog Input Application ...3-7
Figure 3-8. DASYLab Flowchart Finding the Running Maximum of a Signal.......3-8
Figure 3-9. LabVIEW Block Diagram Calculating the

Running Maximum of a Signal ...3-9
Figure 3-10. VI and SubVI to Calculate a Running Maximum3-10

Table
Table 1-1. DASYLab and LabVIEW Terminology..1-9

Activity
Activity 3-1. Converting a DASYLab Experiment to LabVIEW...............................3-16

© National Instruments Corporation ix DASYLab to LabVIEW Migration Guide

About This Manual

This manual provides an introduction to LabVIEW and G programming for
users familiar with DASYLab. It also contains information on how to use
the tools provided with the DASYLab to LabVIEW Migration Toolkit that
help you move your existing DASYLab applications to LabVIEW.

This manual assumes you are familiar with the Windows NT/98/95
operating system.

Conventions Used in This Manual
The following conventions are used in this manual:

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

This icon denotes the beginning of an activity.

This icon denotes the end of an activity.

This icon denotes a tip, which alerts you to advisory information.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click on in the software,
such as menu items and dialog box options. Bold text also denotes
parameter names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,

About This Manual

DASYLab to LabVIEW Migration Guide x www.natinst.com

programs, subprograms, subroutines, device names, functions, operations,
variables, filenames and extensions, and code excerpts.

Tutorial Tutorial references provide pointers to related activities in other documents
or in the LabVIEW Online Reference.

Related Documentation
The following documents contain information you might find useful as you
read this manual:

• LabVIEW QuickStart Guide

• G Programming Quick Reference Card

• LabVIEW User Manual

• LabVIEW Online Reference, available by selecting Help»Online
Reference.

• G Programming Reference Manual

• LabVIEW Data Acquisition Basics Manual

• LabVIEW 5.1 Addendum

© National Instruments Corporation 1-1 DASYLab to LabVIEW Migration Guide

1
Introduction to DASYLab
and LabVIEW

The DASYLab to LabVIEW Migration Toolkit provides tools and
information to help DASYLab users to become familiar with and use
LabVIEW to extend the functionality and range of their development tools.
The migration tools included with this documentation are designed to help
you transition from DASYLab to LabVIEW with existing applications and
develop new applications in LabVIEW.

DASYLab is an easy-to-use development environment for creating
applications that perform measurements, analyze acquired data, and
generate reports. DASYLab applications are built in a graphical
environment by configuring different program modules with dialog
windows and arranging them by connecting them with wires that pass
data from one module to the next. DASYLab includes support for a range
of data acquisition devices, GPIB interfaces, and other hardware.

LabVIEW is a graphical programming environment that uses a graphical
diagram similar to DASYLab for developing measurement and automation
systems. LabVIEW is a complete programming environment that enables
you to create more extensive, powerful, and flexible test systems.

Installation
To become familiar with LabVIEW and learn how to convert an existing
application or create a new application, it is best to have DASYLab and
LabVIEW installed. Follow the directions provided with each application
for installation.

To install the DASYLab to LabVIEW Migration Toolkit, run the
setup.exe program on the installation CD and follow the directions
in the installer.

Chapter 1 Introduction to DASYLab and LabVIEW

DASYLab to LabVIEW Migration Guide 1-2 www.natinst.com

DASYLab to LabVIEW Migration Toolkit
The migration tools consist of the following three components:

• DASYLab to LabVIEW Migration Guide

• DASYLab File I/O Functions for LabVIEW

• Example files, located in the LabVIEW\Examples\DASYLab folder

This manual describes the differences between DASYLab and LabVIEW
and introduces the LabVIEW environment and programming methodology
in terms familiar to DASYLab users. This information is not intended to
completely document LabVIEW and should be used in conjunction with
the LabVIEW documentation. This manual also introduces the terminology
used in LabVIEW and describes it in terms used in DASYLab.

You can use the DASYLab File I/O functions (VIs) to access your existing
DASYLab data files (.ddf) from within a LabVIEW application. These
VIs support the default DASYLab data file format and streaming data files
written directly from a data acquisition driver in DASYLab. You also can
exchange data between DASYLab and LabVIEW data by reading and
writing it in pure binary format without additional timing and channel
information. For more information on the DASYLab File I/O functions,
see Appendix A, DASYLab File I/O Functions.

The example files that accompany the DASYLab to LabVIEW Migration
Toolkit provide you with several different approaches to converting
DASYLab experiments to LabVIEW VIs. This examples directory
includes LabVIEW and DASYLab files.

Comparison of DASYLab and LabVIEW
DASYLab and LabVIEW are development tools designed to build
measurement applications that use a graphical diagram to define the
execution of the application, rather than a text-based syntax like Visual
Basic or C. Although DASYLab and LabVIEW look similar, there are
some underlying differences in the design and execution of applications
created in these two environments.

LabVIEW data wires contain simple data types, like Booleans, strings,
floating-point numbers, and integers, as well as arrays and structures of
these types that represent any type of information imaginable. DASYLab
processes data in defined data blocks, which are usually the result of a
measurement or derived data blocks of measurements.

Chapter 1 Introduction to DASYLab and LabVIEW

© National Instruments Corporation 1-3 DASYLab to LabVIEW Migration Guide

DASYLab data wires pass complete data blocks, which are complex
data structures that contain the measurement data along with additional
information such as scan rate and channel information. In LabVIEW,
you handle this additional information in the design of the program.

LabVIEW contains a number of different graphical programming
structures—loops, sequences, and case structures—that make it possible
for you to direct program execution and respond to different conditions
in an application. In DASYLab, such program control is only partially
possible using indirect methods like the trigger and relay modules.
Although LabVIEW does not provide as much automatic data handling
of measurement information as DASYLab, it contains a more flexible
and powerful programming interface that allows you to define advanced
and complex programs quickly.

The LabVIEW graphical programming language, called G, provides all
the tools familiar in most traditional text-based programming languages.
With these tools, developers can define a wider range of process, program
structures, and functions than is possible in the DASYLab flowchart.

Tutorial Complete the activities Chapters 1 through 3 of the LabVIEW
QuickStart Guide to learn and practice basic programming features in
LabVIEW. The LabVIEW QuickStart Guide contains specific information
and activities you can use to learn LabVIEW.

Virtual Instruments
An application in LabVIEW is called a virtual instrument, or VI. A VI is
analogous to an experiment in DASYLab. Unlike DASYLab experiments,
LabVIEW VIs do not have global settings to set sample rate, block size, and
so on. All hardware selection or control in LabVIEW is done directly in the
function blocks in the block diagram.

Also, unlike the DASYLab experiment and its single flowchart, each VI
consists of two components—the front panel, which is analogous to the
user interface of the application, and the block diagram, which is analogous
to the code. The two parts are stored together in one file for each VI. These
two parts are created and edited in the two main windows of the LabVIEW
environment.

The front panel of the VI is used to create and configure the user interface
and its objects, such as buttons, sliders, and graphs of an application.
Creating the front panel is the first step when building a new application
in LabVIEW.

Chapter 1 Introduction to DASYLab and LabVIEW

DASYLab to LabVIEW Migration Guide 1-4 www.natinst.com

The block diagram is the graphical source code of the application. It is
similar to the flowchart in DASYLab, except that you do not have specific
function blocks in the block diagram to create and operate each user
interface object. A block diagram consists of different function blocks that
define the operation of the application.

SubVIs
When you use a VI inside another block diagram, it is called a subVI,
similar to the black box module in DASYLab, or a subroutine in other
programming languages. For example, a VI that measures the temperature
from a sensor connected to a data acquisition card can be converted into a
subVI and used in another VI as part of a larger monitoring or test system,
as shown in the following figure.

Figure 1-1. Reuse of Digital Thermometer VI as a SubVI in Temperature Chart VI

Tip Use subVIs in your applications to simplify debugging and keep the block diagram
easy to read. Any group of functions that performs a specific, defined task should be
combined into a subVI.

Chapter 1 Introduction to DASYLab and LabVIEW

© National Instruments Corporation 1-5 DASYLab to LabVIEW Migration Guide

Another use for subVIs is displaying multiple front panels in an
application. In DASYLab, you can create and save multiple layouts with
one flowchart and display the different layouts at runtime. In LabVIEW,
because each VI or subVI has one front panel (which can contain several
different elements), you use different subVIs to display more than one user
interface. The front panel of the main application (top-level VI) is used to
navigate through the application, with subVI front panels as the user
interfaces for different parts of the application.

One benefit of the subVI architecture is the ability to execute, test, and
debug each subVI individually. Because each subVI is an independent VI,
you can set all the inputs on the front panel and run it as an independent
program to examine the output (front panel) for the proper results.

LabVIEW includes a large group of subVIs for hardware I/O, analysis,
and more. LabVIEW also contains a large selection of built-in basic
function modules such as arithmetic, string and array manipulation,
comparison, type conversion, and so on. You use these functions and
subVIs to build your application.

Tip Basic functions are indicated by a yellow icon background.

Tutorial Learn more about subVIs by completing Activities 3, 4, and 6 in
the LabVIEW Online Reference, available by selecting Help»Online
Reference and selecting Learning LabVIEW with Activities from the
contents page.

Front Panel
You use the front panel to develop and customize the user interface of
an application. The available objects are found in the Controls palette,
available by selecting Windows»Show Controls Palette, or
right-clicking, or popping up, on the background of the front panel.

Chapter 1 Introduction to DASYLab and LabVIEW

DASYLab to LabVIEW Migration Guide 1-6 www.natinst.com

The Controls palette is an example of a floating palette in LabVIEW.
You can keep visible any subpalette by selecting the thumbtack in the top
left corner of the palette. This provides quicker repeated access to the
controls or functions in the selected palette.

The user interface objects are organized into groups, or subpalettes, such as
numeric controls and indicators, Boolean controls and indicators, string
and table controls and indicators, lists, and so on. To place objects on the
front panel, select an object in the Controls palette with your mouse and
drag the object to the front panel.

Tools
When you develop an application in the flowchart in DASYLab, you use
one tool for all operations, such as configuring or moving a module or
creating a wire. The mouse cursor automatically changes shape depending
on its location or the operation being performed.

In LabVIEW, there are several tasks you can perform with the mouse
cursor, and you select from different tools to perform these operations.
To select these different tools display the Tools palette by selecting
Windows»Show Tools Palette, which is shown in the following figure.

You can rotate through the most commonly used tools by using the Tab key.
You also can use the space bar to switch between the Operating and
Positioning tools only.

For more information on the Tools palette, see Chapter 2, Editing VIs, of
the G Programming Reference Manual.

Controls and Indicators
Each object on the front panel can serve either as an input or as an output.
Inputs, called controls in LabVIEW, are used to pass a value through the
user interface into the block diagram. Outputs, called indicators, are used
to display values coming from the block diagram on the user interface.
Each user interface object has a default direction, either control or

Chapter 1 Introduction to DASYLab and LabVIEW

© National Instruments Corporation 1-7 DASYLab to LabVIEW Migration Guide

indicator, which you can change by popping up on the object and selecting
Change to Indicator or Change to Control.

For each object you create on the front panel, a corresponding icon called
a terminal is created on the block diagram. The terminals are used to
connect, or wire, the front panel objects to the functions blocks in the block
diagram.

Tip On the block diagram, control terminals are displayed with a thick border and
indicator terminals have thin borders.

Figure 1-2. Controls and Indicators on the Front Panel and Block Diagram

Each control is given a name when you place it on the front panel. You can
modify the name immediately after creating a new control, or you can pop
up on the object and select Show»Label to modify the name at a later point.
The label is shown next to the corresponding terminal on both the front
panel and the block diagram.

See the LabVIEW QuickStart Guide and Chapter 2, Editing VIs, of the
G Programming Reference Manual for detailed descriptions of the front
panel editor and user interface objects.

Control ControlIndicator Indicator

Chapter 1 Introduction to DASYLab and LabVIEW

DASYLab to LabVIEW Migration Guide 1-8 www.natinst.com

Block Diagram
The LabVIEW block diagram consists of subVIs and functions that define
the operation of the VI. Data wires are used to pass data from one function
to the next and to define the order of operation. Terminals for each of the
user interface controls are used to pass data to and from the front panel.
LabVIEW also includes other programming structures that extend the
flexibility of the block diagram. These include loops, case and sequence
structures, nodes to access DLLs, and more.

The following figure shows the available basic functions and subVIs in the
Functions palette, available by selecting Windows»Show Functions
Palette, or by popping up on the background of the block diagram.
The functions are organized into subpalettes such as numeric, Boolean,
string, file I/O, and so on. You also can customize or configure the
Functions palette and add your own functions.

For more information about the Functions palette, see Chapter 17,
Introduction to the Block Diagram, in the G Programming Reference
Manual.

Running a VI
The execution of a LabVIEW VI is different from the execution of a
DASYLab experiment. In DASYLab, the experiment runs in a continuous
mode when you start the experiment and continues to run until you stop it.
In LabVIEW, VIs run only once. Continuous run or repetition of parts of a
block diagram are done using loops.

Chapter 1 Introduction to DASYLab and LabVIEW

© National Instruments Corporation 1-9 DASYLab to LabVIEW Migration Guide

As you build a VI, LabVIEW continuously checks the syntax of the
program to determine if there are any errors. If an error exists, a broken Run
button is shown in the toolbar in place of the Run button. Pressing the
broken Run button displays a list of errors. Double-clicking on an error
message shows the location of the error. When everything is correct, the
Run button is shown.

Tip For debugging purposes, you can use the Continuous Run button to execute a simple
block diagram repeatedly. You should be careful using this mode, because you can get into
situations where it is difficult to stop the VI.

You can stop the VI by including a stop or quit button on your user
interface. The stop button on the toolbar also stops the VI immediately,
which can leave hardware, files, and communication in an unknown state,
and is therefore not recommended.

LabVIEW Terminology
Many of the concepts, tools, and methodologies in DASYLab and
LabVIEW are similar, although each environment uses different
terminology. Table 1-1 lists commonly used DASYLab and LabVIEW
terms with each environment and a short description or clarification.

Table 1-1. DASYLab and LabVIEW Terminology

DASYLab LabVIEW Description

Experiment VI Term used for a basic program in each environment. An
experiment contains global settings, such as sample rate
and block size, which do not exist for VIs.

Layout Front Panel The front panel corresponds to the user interface of the
program.

Flowchart

Worksheet

Block Diagram The block diagram defines the operation of the program.

Module Function A function in LabVIEW is a basic block diagram function
block that is defined as part of the LabVIEW
environment. You cannot access the code of a function.

Black Box

Module

SubVI A subVI is a function block that is stored as a separate VI
with its own front panel and block diagram. You can
access the front panel and block diagram of a subVI by
double-clicking on the icon.

Chapter 1 Introduction to DASYLab and LabVIEW

DASYLab to LabVIEW Migration Guide 1-10 www.natinst.com

— Control A control is a front panel object used to pass data to the
block diagram of the VI.

— Indicator An indicator is a front panel object used to return or
display data from the block diagram of the VI.

— Terminal A terminal is an icon on the block diagram that represents
a front panel object; the inputs or outputs of a block
diagram function block (subVI or function).

Recorder Waveform Chart Chart display used to record slow signals. New data
points are continuously appended to the end of the
existing plots. Charts are used for continuous updates.

Y/t Chart Waveform
Graph

Graph display for signals with linear x scaling. Used to
display time signals and other signals with a constant X
increment. Graphs are used to display data at the end of
an acquisition.

X/Y Chart XY Graph Graph display used to display signal with separate X and
Y components. Graphs are used to display data at the end
of an acquisition.

— Icon The image that represents a function or subVI on the
block diagram.

— Node Nodes are the execution elements of a block diagram.
Data is passed through wires to and from nodes.

Wire Wire A representation of data being passed from one node to
another in the LabVIEW block diagram. Each wire has a
defined data type and dimension.

Data Block Data Type
(string, integer,
float, Boolean,
array, cluster,
and so on)

All data items used in LabVIEW have a defined data type,
such as string, Boolean, integer, and so on. The data type
is determined by the source of the data (wire) or by a
conversion function. Arrays and clusters are more
complex data types.

— While Loop A while loop is a programming structure that is repeated
while a Boolean value is true; analogous to while loop in
other programming languages.

Table 1-1. DASYLab and LabVIEW Terminology (Continued)

DASYLab LabVIEW Description

Chapter 1 Introduction to DASYLab and LabVIEW

© National Instruments Corporation 1-11 DASYLab to LabVIEW Migration Guide

— For Loop A for loop is a programming structure that is repeated a
given number of times or once for each element of an
array; analogous to for loop in other programming
languages.

— Case Structure Programming structure that allows selection of a specific
section of code based on a Boolean or integer value;
analogous to If-Then-Else or Switch statements in other
programming languages.

— Sequence
Structure

Programming structure that allows you to define the exact
execution order of a section of a block diagram.

Global Variable

Global String

Local Variable A LabVIEW block diagram terminal that provides read or
write access by name to front panel objects.

— Global Variable A block diagram terminal that provides access to a global
variable created in a global variable file (special VI);
multiple VIs can access the same global variables. Global
variables in LabVIEW are different from DASYLab
global variables.

DASYLab
Extension

CIN (Code
Interface Node)

DLL (Dynamic
Link Library)

Function block written in C specifically for LabVIEW to
extend the LabVIEW functionality.

Generic DLL that can be accessed from the block
diagram to extend the LabVIEW functionality.

Routing/
Autorouter

There is no autorouting feature in LabVIEW. While
creating a wire, you can click on the block diagram to
tack down a wire in a specific location.

Black Box Import
and Export
Modules

SubVI
Connector Pane

The connector pane of a subVI takes the place of the
Black Box Import and Export Modules. As you create a
subVI, you use the connector pane to define the inputs
and outputs of the subVI.

Experiment»
Hardware Setup
and Experiment
Setup

Data Acquisition
VI Parameters

The settings made in the Hardware and Experiment Setup
dialog boxes in DASYLab are set directly as parameters
of the data acquisition VIs in LabVIEW.

Table 1-1. DASYLab and LabVIEW Terminology (Continued)

DASYLab LabVIEW Description

Chapter 1 Introduction to DASYLab and LabVIEW

DASYLab to LabVIEW Migration Guide 1-12 www.natinst.com

Password
Protection

VI Info Individual VIs and subVIs can be password protected in
the VI Info dialog box by selecting Windows»Show VI
Info.

Screen Lock VI Setup You use the options in the VI Setup dialog box, available
by popping up on the icon in the taskbar and selecting
VI Setup, to disable elements of the LabVIEW
environment while the application is running.

Window
Arrangement

Front Panel,
Multiple VIs,
Attribute Node

The front panel, as well as multiple VIs, are used to create
different arrangements of user controls and indicators.
You can use the attribute node to change different settings
of a control at runtime such as color, size, and position.

Display Windows,
Tree Window

VI Hierarchy There is no direct corollary in LabVIEW. The VI
Hierarchy window lists all the VIs and subVIs used and
their calling relationship.

Versions:
Lite, Basic, Full

Versions:
Base, Full,
Professional

There are three versions of LabVIEW (Base, Full,
Professional) with increasing sets of VIs and other
development tools such as source code control, a
standalone executable builder, and so on.

Module Groups Functions
Palette

Functions and VIs in LabVIEW are grouped by class
(numeric, string, file I/O, and so on) in the Functions
palette of the block diagram.

File Formats VI File Format LabVIEW uses one file format for VIs and subVIs.
You can exchange VIs among different platforms that
LabVIEW supports (Windows NT/98/95, Macintosh,
UNIX, Concurrent PowerMAX, and Linux). Starting
with LabVIEW 5.1, you can save VIs in file formats for
previous versions of LabVIEW.

DASYLab Net
(Client, Server)

VI Server VI Server can be used to control a remote copy of
LabVIEW. With VI Server, you can load VIs, start and
stop them and perform other environment operations.

Net Import and
Net Export
Modules

DataSocket The DataSocket VIs in LabVIEW are used to share data
among LabVIEW applications on different computers.
You can also use the low level TCP/IP functions to
perform more customized network communication
among applications.

Table 1-1. DASYLab and LabVIEW Terminology (Continued)

DASYLab LabVIEW Description

© National Instruments Corporation 2-1 DASYLab to LabVIEW Migration Guide

2
LabVIEW Programming

LabVIEW programs, like applications developed in DASYLab, are based
on a graphical diagram. However, there are some differences in the
graphical methodology between these two environments. In general, most
of the flowchart concepts that exist in DASYLab also apply in LabVIEW.

LabVIEW goes beyond DASYLab by integrating more programming
concepts, such as programming structures and data types. Generally
speaking, LabVIEW combines the ease of use of the DASYLab graphical
environment with the flexibility of text-based programming languages
like Visual Basic or C.

Unlike text-based applications that execute line by line from top to bottom,
LabVIEW uses a principle called dataflow to determine the execution order
of the functions in the block diagram.

Because of the graphical nature of the LabVIEW program code, you can
develop parallel sections in a block diagram that are not linked to one
another and where no data dependency exists among function blocks. In
this case, the execution system determines an order of execution for these
unrelated sections of code.

Data Types
Like DASYLab, LabVIEW passes data from one function block to another
using data wires. In DASYLab, all data passed between modules is stored
in data blocks that contain numeric or Boolean data. The data inside each
data block is stored in an array of single-precision floating-point numbers.

In addition to the data, each data block in DASYLab contains and passes a
collection of other information such as a start time and sample rate, which
is used by each module in DASYLab to process or display the data.

LabVIEW stores and passes all data types with a defined data type, such
as string, Boolean, integer, and more complex types, such as arrays and
clusters. All data types have an identifying color used for the wires and
terminals of that specific data type. Each terminal also has a unique symbol
that identifies the data type and representation. Each data wire contains

Chapter 2 LabVIEW Programming

DASYLab to LabVIEW Migration Guide 2-2 www.natinst.com

only the information given to it by its source. The data wire does not contain
additional information as in DASYLab.

The LabVIEW programming model of using defined data types follows
text-based programming languages, although LabVIEW handles all
memory tasks for you, greatly simplifying program development. This
flexibility in choosing specific data types and creating data structures
enables you to optimize memory usage and create more advanced program
structures.

Data Type Conversion
LabVIEW automatically converts between any of the numeric data types,
integers, and floating-point numbers to match the data type of an input
terminal. When an automatic conversion occurs, a small gray dot appears
at the location of the data terminal. Other conversions are not done
automatically.

You also can manually convert any numeric data types using the conversion
functions in the Functions»Numeric»Conversion palette. Additional
conversion functions for strings and Booleans are available and can be
found in the corresponding palettes.

Polymorphism
Many of the LabVIEW functions are polymorphic, which means they can
accept inputs of different data types (strings, numbers, scalars, and arrays).
For example, the Add function can add two scalar values, two arrays, or an
array with a scalar value. The comparison functions also are polymorphic,
and support strings, scalars, and arrays.

Simple Data Types
Simple data types in LabVIEW include scalar values of strings, Booleans,
integers, floating-point numbers, and so on. Integers have different
representations of 8-, 16-, and 32-bit integers as well as signed and
unsigned. Floating-point numbers have representations of single (4 byte),
double (8 byte) and extended (16 byte) precision.

The data type of a front panel object is determined by the type of object.
For example, knobs and slides are numeric, buttons are Boolean, and text
boxes are strings. Objects that represent numeric data can have any
representation of integer or floating-point numbers. You can change the
representation of an object by popping up on the object and selecting
Representation.

Chapter 2 LabVIEW Programming

© National Instruments Corporation 2-3 DASYLab to LabVIEW Migration Guide

Arrays
An array is a data type that contains multiple items of the same data type.
For example, a waveform acquired from a data acquisition card is stored
in an array of numbers. Arrays in LabVIEW can have any number of
dimensions. You can have an array of any data type, except another array,
including reference numbers (refnums) and clusters. If you need to create
an array of arrays, add an extra dimension to the original array.

In comparison, DASYLab stores all its data, even single values, in
1D arrays, which are contained in the data blocks. In LabVIEW, you define
whether a data item is a scalar (a single value of a data type) or an array.

There is a wide range of functions available in LabVIEW to manipulate
arrays, including creating arrays, reshaping arrays, sorting arrays, and
more. There are also functions to easily extract individual elements, as well
as whole columns out of a multi-dimensional array. On the block diagram,
arrays are indicated by thicker wires, with increasing thickness for
increasing number of dimensions.

Clusters
Clusters are a combination of multiple data items of different types. You
can combine any data types in a cluster, including scalars, strings, arrays,
and other clusters.

Clusters are used to create data structures, which represent a logical
grouping of information. You can pass a cluster with all its data items on
one wire, which greatly simplifies the block diagram. LabVIEW includes
functions to easily combine (bundle) different data items into one cluster or
to extract (unbundle) data items from a cluster.

Clusters are used frequently throughout LabVIEW, and certain default
clusters have been defined. The most commonly used cluster is the error
cluster, which is used to pass status and error information between
functions and subVIs.

Chapter 2 LabVIEW Programming

DASYLab to LabVIEW Migration Guide 2-4 www.natinst.com

Graphs
Another application of clusters is to bundle information together before
passing it to the waveform or XY graphs. The waveform graph can accept
formatted waveform information that includes an initial X and incremental
X value. These two scalar values in addition to a 1D or 2D array are used
to plot the waveform data with the X axis scaled accordingly, as shown in
Figure 2-1.

Figure 2-1. Bundling Data to a Waveform Cluster and Waveform Graph

Enumerations
An enumeration is an unsigned integer data type in which specific integer
values are associated with descriptive strings. Enumerated types are useful
for creating selection lists with a predefined list of items. For example, you
can create a list of different tests that can be performed. Each test is an item
in the list and can be associated with a corresponding program structure in
the block diagram, as shown in Figure 2-2.

Chapter 2 LabVIEW Programming

© National Instruments Corporation 2-5 DASYLab to LabVIEW Migration Guide

Figure 2-2. Example of an Enumerated Data Type

Refer to Chapter 14, Array and Cluster Controls and Indicators,
of the G Programming Reference Manual for more information on
enumerated types.

Paths and Reference Numbers
The path data type is used for the path of a filename or directory. This data
type is similar to a string but is used only with file I/O VIs. You can use the
path control and indicator to enter or display a pathname on the front panel
or to create input and output terminals on a subVI.

The reference number data type, or refnum, is analogous to a pointer or a
handle in traditional programming languages. A refnum refers to an object
in memory that has no common representation. For example, once you
open a file for reading or writing, it is assigned a reference number. Other
file I/O functions can then use this reference number to access the same file.

Programming Structures
DASYLab is based on a model of continuous execution, where the
flowchart is executed repeatedly until the user stops the application.
In LabVIEW, the block diagram is executed only once and stops when
all functions have been executed.

LabVIEW supports several different programming structures that provide
the ability to repeat a section of the block diagram a number of times,
branch into different sections of the block diagram based on a variable,
and order the sequence of the block diagram.

Chapter 2 LabVIEW Programming

DASYLab to LabVIEW Migration Guide 2-6 www.natinst.com

While Loop
A While Loop is a structure that repeats a section of code when a specific
condition is True. It is comparable to a Do While loop or a Repeat-Until
loop in text-based programming languages.

The While Loop is a resizable box you use to execute code until a Boolean
value passed to the conditional terminal is False. The VI checks the
conditional terminal at the end of each iteration. Therefore, the While Loop
always executes at least once. The iteration terminal is an output numeric
terminal that outputs the number of times the loop has executed. The
iteration count always starts at zero. If the loop runs once, the iteration
terminal outputs 0. The following figure shows a While Loop and indicates
the iteration and conditional terminals.

Figure 2-3. While Loop with Terminals

In Figure 2-4, the VI calculates a random value in every iteration of the loop
and multiplies it by the scaling value, which is passed into the loop from a
control on the front panel. The loop continues running as long as the scaled
random value is greater than 0.05 and displays the current iteration value
on the front panel. Once the value is less than the threshold, the loop stops
and outputs the final scaled value, which is displayed on the front panel.

Iteration
Terminal

Conditional
Terminal

Chapter 2 LabVIEW Programming

© National Instruments Corporation 2-7 DASYLab to LabVIEW Migration Guide

Figure 2-4. Example of While Loop Used in an Application

Tutorial To learn more about using While Loops, complete Activity 8 in
the LabVIEW Online Reference, available by selecting Help»Online
Reference and selecting Learning LabVIEW with Activities from the
contents page.

For Loop
The For Loop repeats a section of the block diagram a defined number of
times. The For Loop includes two terminals. The count terminal, which
you connect with a number value, determines how often the loop is
executed. The iteration terminal returns the current iteration value of the
loop, similar to the While Loop. The following figure shows a For Loop and
indicates the count and iteration terminals.

Figure 2-5. For Loop with Terminals

Count

Iteration

Chapter 2 LabVIEW Programming

DASYLab to LabVIEW Migration Guide 2-8 www.natinst.com

Indexing
You can use the For Loop to build an array of values by calculating each
element of the array inside the loop and connecting a wire from these
values to a function or other terminal outside the loop. This is possible
because the tunnel that passes the values from inside the loop to the outside
accumulates each value and passes all of them as an array at the completion
of the For Loop. This behavior of the tunnel is called indexing. By default,
indexing is enabled for every tunnel created on a For Loop. You can disable
this behavior by popping up on the tunnel and selecting Disable Indexing.
Once disabled, such a tunnel returns the last calculated value from the loop.

Tutorial To learn more about using For Loops, complete Activities 13, 18,
and 19 in the LabVIEW Online Reference, available by selecting
Help»Online Reference and selecting Learning LabVIEW with
Activities from the contents page.

Case Structure
You use Case structures to run different sections of code depending on the
value of a specific variable. Case structures are analogous to Case or Switch
statements in traditional programming languages.

Case structures consist of one visible frame and one or more hidden frames
in memory. The frame includes a selector terminal that determines which
frame is executed. You can connect either a Boolean or integer value to the
selector. With a Boolean selector, the Case structure has a True and a False
case. With an integer selector, the Case structure can have several different
cases. The top of the frame displays which frame is currently displayed.
The following figure shows a Case structure.

Figure 2-6. Case Structures

Chapter 2 LabVIEW Programming

© National Instruments Corporation 2-9 DASYLab to LabVIEW Migration Guide

Tutorial To learn more about using Case structures, complete Activity 14
in the LabVIEW Online Reference, available by selecting Help»Online
Reference and selecting Learning LabVIEW with Activities from the
contents page.

Sequence Structure
Sequence structures are similar to Case structures in that they have multiple
frames, with only one frame visible at a time. However, the Sequence
structure executes all its frames in order. It is used to define the order in
which different processes with no data dependency between them are
executed. Sequence structures also can be used to arrange logical steps
of sequences in a small space on the block diagram.

When the Sequence structure is created it has only one frame. You use the
pop-up menu of the Sequence structure to add or delete individual frames.
Values wired out of the sequence are not available outside the sequence
until the whole sequence is complete, even if they are wired out of an earlier
frame of the sequence. The following figure shows a Sequence structure.

Figure 2-7. Sequence Structure with All Frames Shown

Tutorial To learn more about using Sequence structures, complete
Activity 15 in the LabVIEW Online Reference, available by selecting
Help»Online Reference and selecting Learning LabVIEW with
Activities from the contents page.

Chapter 2 LabVIEW Programming

DASYLab to LabVIEW Migration Guide 2-10 www.natinst.com

Local and Global Variables
LabVIEW uses local and global variables to access data without passing it
by wire. Global variables in LabVIEW and DASYLab are not the same
thing. A LabVIEW local variable corresponds in usage to the DASYLab
global variable.

Local Variables
Local variables in LabVIEW serve many of the same purposes as global
variables in DASYLab. They allow you to access a value from any place
on your block diagram referenced only by name.

A local variable is a copy of a terminal for a front panel object. When you
create an object on the front panel, a corresponding terminal is created on
the block diagram. If the object is a control, you can read the terminal. If it
is an indicator, you can write a value to it.

For more information about local variables, see Chapter 23, Global and
Local Variables, of the G Programming Reference Manual.

Global Variables
The LabVIEW environment supports multiple VIs running at the same
time. With global variables, you can set up named front panel objects that
can be accessed from multiple VIs at the same time. The global variable
exists in a separate front panel that contains no block diagram and is used
only to store the data that is accessed from other VIs.

For more information about global variables, see Chapter 23, Global and
Local Variables, of the G Programming Reference Manual.

© National Instruments Corporation 3-1 DASYLab to LabVIEW Migration Guide

3
Migrating from DASYLab
to LabVIEW

This chapter outlines and describes a number of specific methods for
converting a DASYLab diagram into LabVIEW.

Basics of Converting a Program
Before converting existing DASYLab applications to LabVIEW, you
should be familiar with the basics of LabVIEW programming and VI
design. Although it might seem easiest to mimic the design of the
DASYLab flowchart as directly as possible, it may be more efficient to
redesign an application to better fit LabVIEW programming structures.

Converting a DASYLab application to LabVIEW is similar to building a
LabVIEW VI. The following steps are typical sequence of a conversion:

1. Evaluate the basic design and operation of the DASYLab experiment
and outline the design of a corresponding LabVIEW VI.

2. For the main VI, build a front panel in LabVIEW that contains
corresponding objects to all the user interface objects used in the
original application. If more than one layout or arrangement of
windows is used in DASYLab, you most likely need to create more
than one VI with corresponding front panels.

3. Develop sections of the block diagram that match linear sections of
the DASYLab flowchart. Linear sections are sections executed in
sequence without any branching, looping, or other flow control.
You might need to build subVIs to match Black Box modules or to
encapsulate other logical code sequences.

4. Combine or connect the different sections of the block diagram with
the appropriate programming structures.

There are some basic things to remember during the conversion of an
application.

• LabVIEW VIs do not have any global settings that correspond to the
settings in the experiment setup of DASYLab. Configuration of timing

Chapter 3 Migrating from DASYLab to LabVIEW

DASYLab to LabVIEW Migration Guide 3-2 www.natinst.com

and I/O parameters are included directly in the block diagram as
functions or parameters of different I/O functions. In addition, you can
use multiple timing settings and I/O parameters in different parts of
your application or for different I/O operations.

• In DASYLab, all modules are configured using dialog windows. In
LabVIEW, user interface controls are configured in a similar manner
through pop-up menus. On the block diagram, all configuration of
functions is done through the selection of the specific function and by
passing in corresponding parameters.

DASYLab Experiment Execution
Once a DASYLab experiment is started, it runs continuously until the user
stops it. A LabVIEW block diagram runs once and then stops. You can
create the continuous behavior in LabVIEW by placing the entire block
diagram inside a While Loop and placing a stop button on the front panel
to stop the operation of the loop and application when desired. The
DASYLab flowchart in Figure 3-1 can be converted into the LabVIEW
block diagram in Figure 3-2. The LabVIEW VI’s front panel is also shown.

Figure 3-1. DASYLab Simple Generator Flowchart

Figure 3-2. LabVIEW Simple Generator VI

Chapter 3 Migrating from DASYLab to LabVIEW

© National Instruments Corporation 3-3 DASYLab to LabVIEW Migration Guide

Passing DASYLab Data Blocks
In DASYLab, the data wires pass complete blocks of data at a time. The
blocks contain qualifying information in addition to the actual data itself,
such as a scan rate, time stamp, channel information, units, and so on.
LabVIEW data wires pass only the information that is explicitly part of
the data type.

Normally, when a signal is acquired or simulated, the function returns only
the pure waveform. Other information, like the sample rate of the signal, is
available as separate information and needs to be manually passed with the
data for later display or processing. You can combine different pieces of
information like this in a cluster, which acts similar to the DASYLab data
block. With the cluster, you can pass all the information with one wire in
your block diagram.

For displaying data on a waveform graph, which corresponds to a Y/t chart
in DASYLab, there is a standard cluster format that includes the initial
X value (time stamp), the incremental or delta X value, such as the sample
period of a signal, and the data to plot. The data can be a 1D array for one
channel or a 2D array for multiple channels.

The source of the initial X value (X0) and incremental X value (∆X) is
defined by the developer of the block diagram. Commonly, the function
supplying the data returns the sample rate or sample period. The X0 value
is frequently set at 0 for fast acquisitions. You also can read back the current
system time for a time stamp similar to DASYLab.

Tip You can use the Bundle function to create clusters with any elements you want to pass
within the block diagram and into subVIs. With the Unbundle function, you can separate a
cluster into its parts to use each data item individually.

Chapter 3 Migrating from DASYLab to LabVIEW

DASYLab to LabVIEW Migration Guide 3-4 www.natinst.com

Figure 3-3 shows how you can use the Bundle function to combine a
waveform with a sample rate and X0 value of 0 in a cluster so it is scaled
correctly on the graph. The AI Acquire Waveform VI returns the sample
rate used for the acquisition.

Figure 3-3. Timescaled Waveform VI

The example in Figure 3-4 acquires data from multiple channels and
returns a 2D array and replaces the X0 value with a time stamp of the
system clock. In this case, the X0 value of the graph is the current
system time.

Chapter 3 Migrating from DASYLab to LabVIEW

© National Instruments Corporation 3-5 DASYLab to LabVIEW Migration Guide

Figure 3-4. Timescaled Waveform VI with Added System Clock Time Stamp

You can apply different scaling to individual channels by building a cluster
for each channel with the appropriate X0 and ∆X information and then
building an array out of the clusters, as shown in Figure 3-5. Each element
of the array is a cluster that represents one waveform.

Figure 3-5. Applying Separate Scaling to Different Channels of Data

Error Cluster
One common cluster used throughout LabVIEW is the error cluster, which
can be created on the front panel as a control or an indicator from the
Controls»Arrays & Cluster palette. You use the error cluster to pass error
and warning information through a sequence of VIs, such as a set of file I/O
or data acquisition functions. Once an error has occurred, all subsequent
functions that receive this error cluster skip their operation and pass on the
error information.

Chapter 3 Migrating from DASYLab to LabVIEW

DASYLab to LabVIEW Migration Guide 3-6 www.natinst.com

Tip The input and output terminals for the error cluster are normally on the bottom
corners of VIs.

Figure 3-6. Error Cluster and Set of File I/O VIs Using the Error Cluster

Input/Output Operations
In DASYLab, input/output operations are an integral part of the flowchart.
Global settings, like the sample rate and block size, determine how fast or
how often data is acquired from devices or instruments or how often
outputs are updated.

In LabVIEW, all control of I/O devices, such as data acquisition and GPIB
instrument control, is handled and configured through corresponding
subVIs. Settings such as the sample or update rate are parameters of these
subVIs and can be set independently for each process. For example, you
can acquire data at 1 kHz with one acquisition and at 10 kHz on a different
acquisition within a single application.

Data Acquisition

Note The LabVIEW information in this section is specific to National Instruments data
acquisition (DAQ) devices and the NI-DAQ driver.

In DASYLab, data acquisition is performed according to the capabilities
of the data acquisition driver and the DASYLab interface to the driver.
The timing of the operations, including sample rate, block size, and
buffered size, is configured in the experiment setup. Most analog input
operations are performed in a continuous mode. An acquisition starts when
the experiment is started, and the acquisition continues to run in the
background throughout the whole experiment. In every cycle of the
flowchart, a block of data is retrieved from the ongoing acquisition,
and the data is processed in the modules on the flowchart.

Chapter 3 Migrating from DASYLab to LabVIEW

© National Instruments Corporation 3-7 DASYLab to LabVIEW Migration Guide

In LabVIEW, data acquisition processes are explicitly started and stopped
using different VIs in the block diagram. Analog input and other operations
can be run in single point, buffered, and continuously buffered mode,
determined by the specific VIs and parameters of the VIs.

The data acquisition VIs in LabVIEW are organized into easy,
intermediate, and advanced levels. Each level offers the same functionality,
but the intermediate and advanced levels offer more parameter options to
select specific operations such as triggering, different gain settings per
channel, and so on. The easy I/O VIs are easy to use but do not offer all the
options or capabilities possible in the driver and hardware. Each level of
DAQ VIs is built on top of the next lower level, so that you can start with
the easiest and work your way into the intermediate and advanced VIs as
your applications require it. The LabVIEW Data Acquisition Basics manual
contains detailed information about the LabVIEW DAQ VIs and their use.

Simple LabVIEW DAQ Applications
At the easy I/O level, only one VI is used to perform an operation, such as
acquiring a number of samples or updating a digital output line. Each of the
easy I/O VIs offers a set of basic parameters for selecting a device, channels
or ports, and other basic settings. The output of an easy I/O VI is a wire with
the measurement data. The easy I/O VIs also perform automatic error
checking and display an error message if an error occurs.

Figure 3-7. Easy I/O DAQ Analog Input Application

Chapter 3 Migrating from DASYLab to LabVIEW

DASYLab to LabVIEW Migration Guide 3-8 www.natinst.com

Converting DASYLab Diagram Flow Control to LabVIEW
This section addresses specific issues of converting modules or sections
of a flowchart from DASYLab to LabVIEW and describes an example
DASYLab flowchart and the corresponding block diagram in LabVIEW.

Continuous Data Processing—Shift Registers
In DASYLab, flowchart execution and data processing is handled in a
continuous manner, with the flowchart and data in each module processed
continuously. For example, many of the analysis and other modules can
process data from different data blocks in a continuous manner. You can
find the maximum of all the data passed into the Statistics module or find
the time between consecutive peaks in a signal, even if the peaks are
located in consecutive data blocks.

LabVIEW VIs handle and process only the data currently passed into the
VI. Using specific programming tools in LabVIEW, such as loops and shift
registers, you can create the same behavior as DASYLab. Shift registers
enable you to calculate values in one iteration of a loop and pass them to
other iterations. When you use shift registers, you can pass data of any type
contained in a wire. Using the shift register in subVIs, a subVI can
remember information from previous calls to the same subVI.

Example: Calculating the
Running Maximum of a Signal
The DASYLab flowchart in Figure 3-8 calculates the running maximum
of a signal. The Statistics module is configured for Running mode. The
generator generates the signal with an amplitude set with a slider.

Figure 3-8. DASYLab Flowchart Finding the Running Maximum of a Signal

The LabVIEW block diagram in Figure 3-9 performs the same operation.
The signal is generated, with the amplitude dependent on a slider. The
Array Max & Min function finds the largest value in the current array.
Then, the Max & Min function returns the larger value of two values passed

Chapter 3 Migrating from DASYLab to LabVIEW

© National Instruments Corporation 3-9 DASYLab to LabVIEW Migration Guide

in, the maximum of the current array and the maximum retrieved from the
left shift register. The output, which is the new maximum, is displayed on
the front panel and passed into the right shift register.

In the first iteration of the loop, the shift register is initialized with the value
0.00, as passed in by the constant wired into the left shift register from
outside the While Loop. In the next iteration of the loop, the new maximum
is returned from the right shift register to the left shift register.

Figure 3-9. LabVIEW Block Diagram Calculating the Running Maximum of a Signal

In this example, you can build a subVI that calculates the running
maximum and remembers the previous maximum into the next call.
Figure 3-10 illustrates a VI and subVI that perform in this manner.
The subVI uses a While Loop and shift registers to store the maximum
value from one iteration of the subVI and feeds the value into the next call.
The loop executes once for each call to the subVI. The shift register is
uninitialized and returns the maximum value from the previous call to the
subVI. The index parameter and Case structure are used to ignore the shift
register and return the maximum of the current data set for the first call to
the subVI.

Tip When using shift registers for this purpose, set the execution option of the VI to
Reentrant Execution. This creates a separate memory space for each instance of the
subVI on a block diagram. Otherwise, the same memory is used for each copy of the subVI,
and incorrect results occur. To set a VI for reentrant execution, right-click on the icon in
the upper right corner of the block diagram of the VI and select VI Setup…, select
Execution Options from the top pull-down menu, and select Reentrant Execution
from the available checkboxes.

Chapter 3 Migrating from DASYLab to LabVIEW

DASYLab to LabVIEW Migration Guide 3-10 www.natinst.com

Figure 3-10. VI and SubVI to Calculate a Running Maximum

Deciding whether to put the shift register into your main VI or build a
separate subVI depends on the specific application. In cases where you
have a very simple operation that you will use in different places, like the
running maximum, it is better to build a subVI.

Triggering
In LabVIEW, if you are using a data acquisition device, you can perform
several trigger functions on your signal using the different options provided
in the NI-DAQ driver and VIs. If you are using these functions for program
flow control and/or to trigger signals from other sources, you can use the
Case structure and Signal Processing functions for the same purpose.

Data Acquisition Triggering
The DAQ VIs, driver, and hardware include support for triggering from
separate digital channels and triggering off acquired analog signals. With
analog triggering, you have the option of performing triggering on the
hardware, if your device supports this option, or triggering in software.

Chapter 3 Migrating from DASYLab to LabVIEW

© National Instruments Corporation 3-11 DASYLab to LabVIEW Migration Guide

Software triggering is performed in the DAQ driver and can be selected
in the DAQ VIs. Triggering performed in hardware is configured with the
intermediate level AI Start VI or the Advanced Level Triggering VI.
Analog software triggering, called conditional retrieval in LabVIEW,
is configured in the Read VI. For triggering, you can specify parameters
such as trigger level, hysteresis, rising and falling slope, pre/post trigger,
start/stop trigger, and more, depending on the operation and device used.

LabVIEW includes many DAQ example applications, found in the
LabVIEW\Examples\DAQ directory, that show different options for
triggering. Consult these and the LabVIEW Data Acquisition Basics
manual for more information.

Program Flow Control
In DASYLab, the Trigger and Relay modules are used for triggering on
signals from other sources or for program flow control. In LabVIEW, you
use the Case structure and the Signal Processing and Array Manipulation
functions in LabVIEW to select which operations LabVIEW performs in
response to the result of your measurement.

The array manipulation functions are used to move and manipulate data in
arrays, such as taking subsets of arrays, extracting columns and rows out of
2D arrays, and so on. The Signal Processing functions are used to process
the data in arrays, such as calculating statistical values, finding peaks and
valleys, performing windowing, filtering and spectrum analysis, and more.

Printing
Printing in DASYLab, as well as report generation, is handled through the
layout. You can print individual controls or the output from a message
module. Printing is normally initiated from the Action module.

In LabVIEW, printing is handled through a specific VI created for this
purpose. You can print the front panel of a VI, either at completion of
running the specific VI or through a special function call.

To select an option to print the front panel at completion, pop up on the
icon in the upper right corner of the block diagram of the VI and select
VI Setup. Select Execution Options from the top pull-down menu
and select Print Panel When VI Completes Execution from the list
of available checkboxes. The VI front panel is printed when the VI has
run, either as a main VI or as a subVI.

Chapter 3 Migrating from DASYLab to LabVIEW

DASYLab to LabVIEW Migration Guide 3-12 www.natinst.com

You also can print the front panel of any VI in memory by using the Print
Panel VI, found in the Functions»Application Control palette. This VI
requires only the name of the VI to be printed, and this VI does not have to
be displayed on the screen. For example, all subVIs are loaded in memory
when run, but the front panels are not normally shown. You can print these
panels using the Print Panel VI.

Report Generation
If you need more advanced or detailed report generation in your LabVIEW
application, you can use a specific report generation tool like HiQ, which
is distributed with LabVIEW.

Note Only users who purchase the LabVIEW Full Development System or LabVIEW
Professional Development System receive HiQ. If you purchased the LabVIEW Base
Package and are interested in National Instruments HiQ, you can find more information on
the National Instruments Web site (www.natinst.com/hiq).

HiQ is a separate environment with a notebook interface designed for
creating reports and doing interactive data analysis and display. The
Communication functions palette includes a set of VIs designed to
work with and control the HiQ environment.

File I/O
File input and output is handled in LabVIEW, similar to DASYLab, with a
set of specific functions and VIs. The Functions»File I/O palette includes
several simple and complex VIs and functions similar to the data
acquisition functions.

Using the low-level VIs, you can freely define other formats, including
binary and ASCII data. LabVIEW supports another file type called a
datalog file (not to be confused with DATALOG, the developers of
DASYLab). A datalog file consists of a sequence of records. Each record
consists of a cluster, must be identical, and can contain any LabVIEW data
type. You can read a datalog file by specifying the individual record you
wish to retrieve.

This toolkit also includes several additional VIs that enable you to access
data saved to DASYLab .ddf files. For more information on these VIs,
see Appendix A, DASYLab File I/O Functions.

Chapter 3 Migrating from DASYLab to LabVIEW

© National Instruments Corporation 3-13 DASYLab to LabVIEW Migration Guide

Messages
The message module in DASYLab is used to move a text message from
an application to a number of different recipients, including a dialog box,
printer, or file. In LabVIEW, each recipient is handled in a different
manner. Files can be written using the file I/O VIs.

For displaying dialog box windows from your application, LabVIEW
includes a One Button Dialog and Two Button Dialog function that are used
to display any text message. With the two button dialog, you can use a
case structure to respond to either button pressed by the user.

Actions
Action modules in DASYLab are used to initiate different asynchronous
actions throughout an application, such as switching between layouts,
resetting modules, printing, and others.

In LabVIEW, actions that apply to specific objects on the front panel are
handled through an attribute node. An attribute node is a programmatic
interface to the attribute and settings of a front panel object. You create an
attribute node from the pop-up menu of the control. The attribute node is
displayed on the block diagram and can be resized to include any number
of attributes for the specific control. For more information on attribute
nodes, see Chapter 22, Attribute Nodes, of the G Programming Reference
Manual.

Network Control and Interaction
DASYLab Net allows control of and interaction with DASYLab
environments running on other computers connected on a network.
In LabVIEW, these same capabilities are possible with the application
control functions.

You can build fully distributed applications with different components of
an application running on different computers. With VI Server, you can run
VIs on a remote machine as if you were running them locally, passing in
values, executing the remote VI, and reading back results. For more
information, see Chapter 21, VI Server, of the G Programming Reference
Manual.

Chapter 3 Migrating from DASYLab to LabVIEW

DASYLab to LabVIEW Migration Guide 3-14 www.natinst.com

Multiple Layouts and Window Arrangements
In many applications, the user can switch between multiple views that show
different data sets or different views of the same data. DASYLab handles
this by using multiple layouts or windows arrangements and using the
Action module to select among different display options.

LabVIEW handles displaying multiple windows or user interfaces by
using multiple VIs, one for each view. Normally when you call a subVI,
values are passed to the subVI block diagram, processed, and other values
returned without displaying the front panel of the subVI. In the VI Setup
of each subVI, you have the option to show the front panel of the subVI
when the subVI is called and also close it afterward. To make the front
panel of a subVI display when called, pop up on the subVI, select SubVI
Node Setup, and select Show Front Panel when called.

Tip Programming using subVIs and different block diagrams for different parts of your
application is significantly different from a DASYLab flowchart, and requires some
practice and well thought-out application design. Review some of the examples in
LabVIEW Examples directory that use multiple VIs to become familiar with selecting
or calling subVIs.

LabVIEW Tools Beyond DASYLab
LabVIEW includes the following additional functions and tools that do not
have parallels in the DASYLab environment.

Menu Bars
You can edit the menu bars with the Menu Editor, available by selecting
Edit»Edit Menu.You can edit the existing menu bar or create your own.
The settings for your menu bar are saved in a separate file with the .rtm
extension and can be directly applied to the current VI.

The Functions»Application Control»Menu palette contains a set of
functions to read and react to interaction with the menu bar and to
dynamically change the options in the menu bar. See the LabVIEW Online
Reference available by selecting Help»Online Reference and the menu bar
examples in Examples\General\menubar.llb for more information on
the Menu functions.

Chapter 3 Migrating from DASYLab to LabVIEW

© National Instruments Corporation 3-15 DASYLab to LabVIEW Migration Guide

Open Network Communication
LabVIEW includes functions and VIs for a variety of network and
interprocess communication options. You use these communication
tools to interact among your LabVIEW application and many other
applications, servers, and programs. Several of these functions can be
used to communicate to other computers connected through a network.
LabVIEW supports the following communication methods:

• TCP/IP

• UDP

• DDE

• ActiveX automation

The ActiveX automation functions are similar to the application control
functions of the VI Server, including property and invoke nodes. With these
functions, you can interact with and control other applications that can act
as an ActiveX automation server in the same manner as you control another
LabVIEW application or VI.

LabVIEW is an ActiveX automation server, so you can control and
automate the LabVIEW environment and call different VIs from other
applications and programming environments that act as ActiveX
automation clients, such as Visual Basic and Visual C++, Microsoft Excel,
and many more.

For more information on communication, refer to the LabVIEW Online
Reference, available by selecting Help»Online Reference, and
Chapters 20 – 24 of the LabVIEW User Manual.

ActiveX Controls
To extend the range of user interface controls and to add more functionality
to the LabVIEW environment, you can import ActiveX controls to a
LabVIEW application. ActiveX controls are self-contained software
components that can be added to standard ActiveX container applications
such as LabVIEW.

For more information about Active X controls, see Chapter 16, ActiveX
Controls, of the G Programming Reference Manual. Additional
information about ActiveX events is also available in the LabVIEW 5.1
Addendum.

Chapter 3 Migrating from DASYLab to LabVIEW

DASYLab to LabVIEW Migration Guide 3-16 www.natinst.com

DLLs
Another option to add functionality to LabVIEW is to access standard
DLLs and call functions from these libraries. You can call any standard
Windows DLL from the LabVIEW block diagram using the Call Library
Function in the Functions»Advanced palette.

Tip If you plan to use a DLL or function repeatedly, it is a good idea to build a separate
subVI as a wrapper for each function call in the library and use these subVIs in your block
diagrams. See Chapter 25, Calling Code from Other Languages, in the G Programming
Reference Manual for additional information on calling DLLs from LabVIEW.

Instrument Drivers
Instrument drivers are libraries of special functions written to access
specific instruments connected to the computer through different buses,
including GPIB, VXI, and serial bus.

Instrument drivers encapsulate both the instrument-specific command
language and parsing routines in easy-to-use measurement-focused
functions. Each driver is written for a specific instrument or series of
instruments, and you can integrate the functions from a driver into your
application to quickly start using the instrument. There are more than
650 free instrument drivers available for LabVIEW that are provided on
the instrument driver CD or that can be downloaded from the National
Instruments Web site (www.natinst.com). New drivers are added to the
Web site as they become available. Instrument manufacturers might also
have LabVIEW instrument drivers available for their instruments that are
not in the list.

Activity 3-1. Converting a DASYLab
Experiment to LabVIEW

The following activity describes converting a DASYLab application into
LabVIEW.

The following graphic shows the DASYLab application flowchart and
corresponding layout for sample application1.dsb. The application
generates a sine signal with a varying amplitude set by a slider. It also
generates a noise signal, adds these two signals together, and stores the
resulting waveform in a file. The waveform is then scaled from Celsius
to Fahrenheit and is displayed on a graph. The running maximum of the
waveform is calculated and displayed on a recorder. A running average of

Chapter 3 Migrating from DASYLab to LabVIEW

© National Instruments Corporation 3-17 DASYLab to LabVIEW Migration Guide

the waveform is made and displayed on another graph. The global settings
of the experiment are 1000 Hz sample rate and a block size of 120.

Chapter 3 Migrating from DASYLab to LabVIEW

DASYLab to LabVIEW Migration Guide 3-18 www.natinst.com

Front Panel
The first step in developing the LabVIEW application is to build the user
interface. Follow these steps to develop the UI.

1. Add a Waveform Graph from the Controls»Graph palette and label
it Time Waveform.

2. Add a Waveform Graph from the Controls»Graph palette and label
it Averaged Waveform.

3. Add a Waveform Chart from the Controls»Graph palette and label
it Maximum Amplitude. Change the Y axis maximum to 100.

4. Add a slider from the Controls»Numeric palette and label it
Amplitude. Change the maximum to 30.

5. Add a Stop button from the Controls»Boolean palette.

6. Save your VI as Sample Application.vi.

The following graphic shows an example of what the front panel of your VI
might look like.

Chapter 3 Migrating from DASYLab to LabVIEW

© National Instruments Corporation 3-19 DASYLab to LabVIEW Migration Guide

Block Diagram
A While Loop allows the application to run continuously, which is done
automatically in the DASYLab application. The While Loop repeats
the graphical code inside the loop until the Stop button is pressed.

7. Place a While Loop from the Functions»Structures palette on the
block diagram. Most of the functions of the VI will be placed within
the While Loop, so size the While Loop accordingly.

8. Wire the Boolean control of the Stop button to the termination
icon of the While Loop through a logic Not function, found on the
Functions»Boolean palette. Doing this ensures that while the
button is FALSE, the loop continues to run.

Signal Generation
The Signal Generation VI creates the waveform, similar to the Generator in
DASYLab. The Phase In and Phase Out parameters create a continuous
signal matching the phase of one data block to the next data block. A shift
register on the While Loop passes the Phase Out data from one iteration of
the loop to the Phase In parameter of the next iteration of the loop.

9. Add the Signal Generation VI found in the Examples\DASYLab\
Activity folder, by selecting Functions»Select a VI. Create
constants for the Signal Generation VI parameters by popping up on
the appropriate terminal and selecting Create Constant. Use the
following values:

• waveform type—sine

• number of samples—120

• frequency—10.0

• sample rate—1000

10. Wire the Amplitude slider control to the amplitude input terminal of
the Signal Generation VI.

11. Calculate the duration of one data block and wire it to the Duration
input of the Signal Generation VI using a Divide function, found in the
Functions»Numeric palette. Divide the number of samples (120) by
the effective sample rate (1000).

12. Create a shift register on the While Loop by popping up on the border
of the While Loop and selecting Add Shift Register. Wire the Phase
Out terminal from the Signal Generation VI to the right shift register,
and the Phase In terminal of the Signal Generation VI to the left shift
register.

Chapter 3 Migrating from DASYLab to LabVIEW

DASYLab to LabVIEW Migration Guide 3-20 www.natinst.com

13. Create a second Signal Generation VI. Create constants to configure it
to generate noise with amplitude 1.0 and the same number of samples
as the first Signal Generation VI.

14. Add the two signals using an Addition function from the
Functions»Numeric palette.

Write Data to File
Use the Write to Spreadsheet File VI to write the waveform data to a file.

15. Inside the While Loop, create the Write to Spreadsheet File VI, found
in the Functions»File I/O palette. Wire the combined waveform to
the 1D Data input of the Write to Spreadsheet File VI.

16. Create a constant for the Append to file? input of the VI and set the
constant to True.

If no filename is specified on the VI, it prompts the user for a filename
every time the VI is called.

17. Create a File Dialog function from the Functions»File I/O»Advanced
File Functions palette outside and to the left of the While Loop.

18. For the Prompt input of the function, pop up on the input and select
Create Constant to create a string constant and enter the string,
Select File Name to write data to:.

19. For the select mode input of the function, right-click on the input and
select Create Constant to create an enum and select new or
existing file.

20. Wire the path terminal of the function into the While Loop and to the
file path input of the Write to Spreadsheet File VI.

Data Scaling
The combined waveform is scaled using the conversion from Celsius to
Fahrenheit. This can be done using the arithmetic functions in LabVIEW.
These functions are polymorphic, meaning they can process scalar and
array data.

21. Create a Multiply function from the Functions»Numeric palette.
Wire the waveform to one input of the Multiply function and create
a constant with value 1.8 on the other input.

22. Create an Add function from the Functions»Numeric palette. Wire
the output of the Multiply function to one input of the Add function
and create a constant with value 32.0 on the other input.

Chapter 3 Migrating from DASYLab to LabVIEW

© National Instruments Corporation 3-21 DASYLab to LabVIEW Migration Guide

Display Time Waveform
To display the time waveform generated by the scaling, you need to
associate the proper sample period with the generated data before passing
it to the graph. The association is handled using a Bundle function that
creates a cluster (data structure) that contains the data, an X0 and ∆X value.
X0 is used for the X value of the first point in the data and corresponds to
the data block time stamp in DASYLab. The ∆X value specifies the
incremental X value on the graph. For a time waveform this is the sample
period (1/sample rate) of the signal.

23. Create a Bundle function from the Functions»Cluster palette. Resize
it for three inputs. Create a numeric constant with value 0.0 and wire it
to the first input of the Bundle function as the X0 value.

24. Calculate the sample period from the sample rate output of the Signal
Generation VI. Do this by adding a Reciprocal (1/x) function from the
Functions»Numeric palette and wiring it to the second input of the
Bundle function.

25. Wire the scaled time waveform to the third input of the Bundle
function and wire the Bundle output to the Time Waveform graph
indicator.

Checkpoint
Your VI is not finished yet, but this is a good point to save your progress
and arrange any wires, functions, and subVIs so your block diagram can be
easily read. The following graphic shows an example of an effectively
organized block diagram up to this point in this activity.

Chapter 3 Migrating from DASYLab to LabVIEW

DASYLab to LabVIEW Migration Guide 3-22 www.natinst.com

Loop Timing
Use the Wait Until Next ms Multiple, or Metronome, function to control
the timing of the While Loop. In the DASYLab application, this is handled
by the Generator module, which releases data according to the global
settings. Without the Metronome function, the While Loop runs as fast as
possible, which can cause your computer to appear slow and unresponsive.

26. Add a Wait Until Next ms Multiple function from the
Functions»Time & Dialog palette. Calculate the loop delay in
milliseconds by multiplying the data block duration by 1000. Wire the
output of the Multiply function to the Wait Until Next Multiple ms
function.

Running Average
There is no pre-built VI or function in LabVIEW for calculating a running
average, so you must create this functionality using arithmetic functions.
In this activity, you average four data points at time, so the 120 data points
are reduced to 30 averaged data points.

27. Create a For Loop from the Functions»Structures palette inside the
While Loop. The For Loop runs once for each average calculated.

28. Calculate the number of loop iterations by dividing the number of
samples (120) by the number of samples per average (4). Create a
Divide function from the Functions»Numeric palette for this purpose.
Wire the output of the Divide to the For Loop count input.

29. Inside the For Loop, place an Array Subset function from the
Functions»Array palette and a Mean VI from the
Mathematics»Probability and Statistics palette.

30. The Array Subset function is used to extract four points at a time.
Wire the constant value 4 to the Array Length input of the Array
Subset function. Create a Multiply function and wire the output of
the Multiply function to the Array Index input of the Array Subset
function.

31. Wire the output of the Array Subset function to the input of the
Mean VI. This calculates the mean for each four sample subarrays.

32. Wire the output of the Mean VI to the outside of the For Loop. At the
boundary all of the average values are stored in a new array for display
outside of the loop.

Chapter 3 Migrating from DASYLab to LabVIEW

© National Instruments Corporation 3-23 DASYLab to LabVIEW Migration Guide

Display Average Array
Display the running average array on a graph. Use the Bundle function to
combine the array data with the scaling information for proper scaling on
the graph.

33. Create another Bundle function from the Functions»Cluster palette
and resize it for three inputs. Create a numeric constant, set it to 0, and
wire it to the first input of the Bundle function.

34. The effective sample period for the averaged data is four times the
actual sample rate (one fourth the number of samples), so use a
Multiply function to multiply the actual sample rate from the other
Bundle function by 4 and wire it to the second input of the Bundle.

35. Wire the averaged data array from the For Loop to the third input of the
Bundle function and wire the Bundle output to the Averaged
Waveform graph indicator.

Calculate and Display the
Running Maximum Amplitude
The Array Max & Min function and Max & Min function, combined with
a shift register are used to calculate the running maximum amplitude of the
signal. The Array Max & Min function is used to find the maximum
amplitude in each waveform. The Max & Min function compares the
current maximum amplitude with the previous maximum to find the new
maximum amplitude, which is passed to the next iteration of the loop using
the shift register.

36. Add an Array Max & Min function from the Functions»Array palette.
Wire the scaled time waveform to the Array Max & Min input.

37. Add a Max & Min function from the Functions»Comparison palette.
Wire the output of the Array Max & Min function to one input of the
Max & Min function.

38. Create another shift register on the While Loop. Wire the left shift
register to the other input of the Max & Min function. Wire the output
from the Max & Min function to the right shift register.

39. Create a numeric constant with value 0.00 outside the While Loop and
wire it to the left terminal of the shift register. This initializes the value
of the shift register when the application is started.

40. Wire the output of the Max & Min function to the Maximum
Amplitude chart.

Chapter 3 Migrating from DASYLab to LabVIEW

DASYLab to LabVIEW Migration Guide 3-24 www.natinst.com

Clean Up the Block Diagram
The functionality of your VI is now finished, so this is a good point to
arrange any wires, functions, and subVIs so your block diagram can be
easily read. The following graphic shows an example of an effectively
organized block diagram of the completed Sample Application VI.

Running and Operating the VI
41. Save the VI.

42. Run the VI. Change the amplitude of the generated signal using the
slider control. The time signal and averaged waveform are displayed
on the graphs. The maximum amplitude of the signal is displayed on
the chart.

To simplify the block diagram, you can combine different logical groups
of VIs and functions into their own subVIs. In addition, this allows you
to reuse these subVIs in other applications. To build subVIs from an
existing block diagram, select a portion of the block diagram and select
Edit»Create SubVI. Sample Application2.vi in the Examples\
DASYLab directory shows this VI using subVIs.

End of Activity 3-1.

© National Instruments Corporation A-1 DASYLab to LabVIEW Migration Guide

A
DASYLab File I/O Functions

The DASYLab to LabVIEW Migration Toolkit includes a number of
functions installed in the Functions palette for exchanging data between
DASYLab and LabVIEW using files. Data can be written by DASYLab in
its native format (DDF) and be read in LabVIEW. The I32 binary format
can be used to exchange data in both directions without timing information.

The most commonly used of these functions is the Read DASYLab DDF
File VI, which returns data in the same blocks into LabVIEW as it was
written in DASYLab. This VI returns both scaled and time-scaled data for
processing in your block diagram. The scaled data includes the pure data in
measured units. The time-scaled data includes timing information and
returns the data in LabVIEW clusters suitable for passing to the waveform
graph. Data from each channel is returned in a separate cluster, and all
channels are combined in an array of these clusters.

Each call to this VI returns one block of data. Making repeated calls to the
VI and using the Read Offset parameter (pass in last value from Mark After
Read) you can retrieve consecutive data blocks as in DASYLab.

The toolkit includes several examples located in the Examples\DASYLab
directory that illustrate how to use the different DASYLab File I/O
functions.

Chapter A DASYLab File I/O Functions — Read DASYLab DDF File VI

DASYLab to LabVIEW Migration Guide A-2 www.natinst.com

Read DASYLab DDF File VI
The Read DASYLab DDF File VI reads data blocks from files stored in DASYLab format or
streaming data format (.ddf).

Note This VI does not support the Microstar DAP streaming data format or multiplexed
data channels.

The Read DASYLab DDF File VI can be called repeated times by passing the offset from the
previous call of the VI into the next VI using a shift register on a for or while loop.

Data is returned in the following three forms:

• Raw data (streaming data format only)—Integer data stored directly from the driver

• Scaled data—Voltage or other scaled units without time information

• Time-scaled data—Scaled data with X0 and ∆X information ready for graphing

If the header information and data are stored in separate files, specify the header file name to
open, and the Read DASYLab DDF File VI automatically opens the data files. The data file
must have the same name, a .ddb extension, and must be located in the same directory as the
header file.

file path (dialog if empty) is the pathname of the file. If filepath is empty
(default value) or is Not A Path, the VI displays a file dialog box from
which you can select a file. Error 43 occurs if the user cancels the dialog
box.

start path (Not A Path) is the pathname to the initially displayed directory
(or folder) in a file dialog. The default value is Not A Path, which is the path
to the last directory (or folder) shown in a file dialog box.

read-offset (bytes:0) is the position in the file, measured in bytes, at which
the VI begins reading.

Chapter A DASYLab File I/O Functions — Read DASYLab DDF File VI

© National Instruments Corporation A-3 DASYLab to LabVIEW Migration Guide

error in (no error) describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster in error out.

status is TRUE if an error occurred before the VI was called or
FALSE if not. If status is TRUE, code is a nonzero error code.
If status is FALSE, code can be 0 or a warning code.

code is the number identifying an error or warning. If status is
TRUE, code is a nonzero error code. If status is FALSE, code can
be 0 or a warning code. Use the Error Handler VIs to look up the
meaning of this code and to display the corresponding error
message.

source is a string that indicates the origin of the error, if any.
Usually, source is the name of the VI in which the error occurred.

Header Information contains general information about the data in the
file. It is read once at the beginning of the file.

Start Time is the start time of data in the file.

Sample Period is the sample period of data in the file.

Number of Channels is the number of channels stored in the file.

new file path (Not A Path if cancelled) is the path of the file from which
the VI read data. You can use this output to determine the path of a file that
you opened using the file dialog box. new file path returns Not A Path if
the user selects Cancel from the dialog box.

Time-Scaled Data is an array of clusters. It contains data scaled to its
proper units and includes timing information so that it can be directly
passed to a LabVIEW waveform graph. Each channel of data includes its
own timing information.

Scaled Data contains the data from the file scaled to its proper units.

Raw Data is binary data read from a streaming data file written directly
from the data acquisition in DASYLab. The data is unscaled.

Scaled Data is the cluster containing time-scaled data for one
channel.

Chapter A DASYLab File I/O Functions — Read DASYLab DDF File VI

DASYLab to LabVIEW Migration Guide A-4 www.natinst.com

Start is the start time for the data block.

Interval is the time interval (sample period) for the data
block.

Data is the scaled data.

error out is a cluster that describes the error status after the VI executes.
If an error occurred before the VI was called, error out is the same as error
in. Otherwise, error out shows the error, if any, that occurred in the VI. Use
the Error Handler VIs to look up the error code and to display the
corresponding error message.

status is TRUE if an error occurred or FALSE if not. If status is
TRUE, code is a nonzero error code. If status is FALSE, code can
be 0 or a warning code.

code is the number identifying an error or warning. If status is
TRUE, code is a nonzero error code. If status is FALSE, code can
be 0 or a warning code. Use the Error Handler VIs to look up the
meaning of this code and to display the corresponding error
message.

source is a string that indicates the origin of the error, if any.
Usually, source is the name of the VI in which the error occurred.

mark after read (bytes) is the location of the file mark after the read.
It points to the byte in the file following the last byte read.

eof? is TRUE when you reach the end of the file while reading.

Chapter A DASYLab File I/O Functions — Read All From DASYLab DDF VI

© National Instruments Corporation A-5 DASYLab to LabVIEW Migration Guide

Read All From DASYLab DDF VI
The Read All From DASYLab DDF VI reads the complete data set files stored by DASYLab
in DASYLab format or streaming data format (.ddf). This VI does not support the Microstar
DAP streaming data format. It does not support multiplexed data channels.

The Read All From DASYLab DDF VI is called once to read the entire data set in the file.
Depending on the size of the file, this can take some time. With very large files, this can cause
a memory overflow if not enough memory is available to store the entire data set. In such
cases, use the Read From DASYLab DDF VI to read individual data blocks at a time.

Data is returned in the following two forms:

• Scaled data—Voltage or other scaled units without time information

• Time-scaled data—Scaled data with X0 and ∆X information ready for graphing

If the header information and data are stored in separate files, specify the header file name to
open, and the Read All From DASYLab DDF VI automatically opens the data files. The data
file must have the same name, a .ddb extension, and must be located in the same directory as
the header file.

file path in (dialog if empty) is the pathname of the file. If filepath is
empty (default value) or is Not A Path, the VI displays a file dialog box
from which you can select a file. Error 43 occurs if the user cancels the
dialog box.

start path (Not A Path) is the pathname to the initially displayed directory
(or folder) in a file dialog box. The default value is Not A Path, which is the
path to the last directory (or folder) shown in a file dialog box.

error in (no error) describes error conditions occurring before the VI
executes. If an error has already occurred, the VI returns the value of the
error in cluster in error out.

status is TRUE if an error occurred before the VI was called or
FALSE if not. If status is TRUE, code is a nonzero error code. If
status is FALSE, code can be 0 or a warning code.

Chapter A DASYLab File I/O Functions — Read All From DASYLab DDF VI

DASYLab to LabVIEW Migration Guide A-6 www.natinst.com

code is the number identifying an error or warning. If status is
TRUE, code is a nonzero error code. If status is FALSE, code can
be 0 or a warning code. Use the Error Handler VIs to look up the
meaning of this code and to display the corresponding error
message.

source is a string that indicates the origin of the error, if any.
Usually, source is the name of the VI in which the error occurred.

Header Information contains the header information from file.

Start Time is the start time of data in file.

Sample Period is the sample period of data in file.

Number of Channels is the number of channels stored in file.

Time-Scaled Data is the cluster of arrays containing complete data from
file, combined with timing information. Time-scaled data can be passed
directly to a LabVIEW waveform graph.

Scaled Data is the cluster containing time-scaled data for one
channel.

Start is the start time for the data block.

Interval is the time interval (sample period) for the data
block.

Data is the scaled data.

Scaled Data is the array containing the complete data set of the file.
No timing information is included.

Chapter A DASYLab File I/O Functions — Read All From DASYLab DDF VI

© National Instruments Corporation A-7 DASYLab to LabVIEW Migration Guide

error out is a cluster that describes the error status after the VI executes.
If an error occurred before the VI was called, error out is the same as error
in. Otherwise, error out shows the error, if any, that occurred in the VI. Use
the Error Handler VIs to look up the error code and to display the
corresponding error message.

status is the number identifying an error or warning. If status is
TRUE, code is a nonzero error code. If status is FALSE, code can
be 0 or a warning code. Use the Error Handler VIs to look up the
meaning of this code and to display the corresponding error
message.

code is the number identifying an error or warning. If status is
TRUE, code is a nonzero error code. If status is FALSE, code can
be 0 or a warning code. Use the Error Handler VIs to look up the
meaning of this code and to display the corresponding error
message.

source is a string that indicates the origin of the error, if any.
Usually, source is the name of the VI in which the error occurred.

Chapter A DASYLab File I/O Functions — Read DASYLab I32 File VI

DASYLab to LabVIEW Migration Guide A-8 www.natinst.com

Read DASYLab I32 File VI
The Read DASYLab I32 File VI reads DASYLab binary (I32) files. The byte order of the data
in the files is reversed from the normal LabVIEW binary file format, therefore the byte order
is reversed in this VI. You must specify the number of columns (channels) and number of rows
(samples per channel) to read. For files with only one channel of data, set the number of rows
to 0 and specify the number of samples to read in the number of columns parameter.

file path (dialog if empty) is the pathname of the file. If the filepath is
empty (default value) or is Not A Path, the VI displays a File dialog box
from which you can select a file. Error 43 occurs if the user cancels the
dialog box.

2D number of rows is the number of rows to create if the data is to be
returned in the 2D array output. If the value is 0 (default), the data is
returned in 1D array.

2D number of columns (channels)/1D count (all as 1D: –1) is the number
of columns to create if the data is to be returned in the 2D array output,
provided that 2D number of rows is greater than 0. Otherwise, this is the
number of single-precision numbers to read and return in a 1D array.

start of read offset (bytes:0) is the position in the file, measured in bytes,
at which the VI begins reading.

new file path (Not A Path if cancelled) is the path of the file from which
the VI read data. You can use this output to determine the path of a file that
you opened using the file dialog box. new file path returns Not A Path if
the user selects Cancel from the dialog box.

2D array contains the single-precision numbers the VI writes to the file if
1D data is not wired or empty.

1D array contains the single-precision numbers read from the file if 2D
number of rows equal 0; otherwise, this output is empty.

mark after read (bytes) is the location of the file mark after the read;
it points to the byte in the file following the last byte read.

EOF? is TRUE if you attempt to read past the end of file.

Chapter A DASYLab File I/O Functions — Write DASYLab I32 File VI

© National Instruments Corporation A-9 DASYLab to LabVIEW Migration Guide

Write DASYLab I32 File VI
The Write DASYLab I32 File VI writes a 2D or 1D array of single-precision numbers (SGL)
to a DASYLab binary file (I32), or appends the data to an existing file. This VI opens or
creates the file beforehand and closes it afterwards. You can use this VI to write scaled data
from data acquisition VIs.

The byte order of the data in the DASYLab I32 files is reversed from the normal LabVIEW
binary file format, therefore the byte order is reversed in this VI.

file path (dialog if empty) is the pathname of the file. If filepath is empty
(default value) or is Not A Path, the VI displays a file dialog box from
which you can select a file. Error 43 occurs if the user cancels the dialog
box.

2D array contains the single-precision numbers the VI writes to the file if
1D data is not wired or empty.

1D array contains the single-precision numbers read from the file if
2D number of rows equal 0. Otherwise, this output is empty.

append to file? (new file:F) Set to True to append the data to a existing file.
Set append to file? to FALSE (default value) to write the data to a new file
or to replace an existing file.

new file path (Not A Path if cancelled) is the path of the file from which
the VI read data. You can use this output to determine the path of a file that
you opened using the file dialog box. new file path returns Not A Path if
the user selects Cancel from the dialog box.

© National Instruments Corporation B-1 DASYLab to LabVIEW Migration Guide

B
Technical Support Resources

This appendix describes the comprehensive resources available to you in
the Technical Support section of the National Instruments Web site and
provides technical support telephone numbers for you to use if you have
trouble connecting to our Web site or if you do not have internet access.

NI Web Support
To provide you with immediate answers and solutions 24 hours a day,
365 days a year, National Instruments maintains extensive online technical
support resources. They are available to you at no cost, are updated daily,
and can be found in the Technical Support section of our Web site at
www.natinst.com/support.

Online Problem-Solving and Diagnostic Resources
• KnowledgeBase—A searchable database containing thousands of

frequently asked questions (FAQs) and their corresponding answers or
solutions, including special sections devoted to our newest products.
The database is updated daily in response to new customer experiences
and feedback.

• Troubleshooting Wizards—Step-by-step guides lead you through
common problems and answer questions about our entire product line.
Wizards include screen shots that illustrate the steps being described
and provide detailed information ranging from simple getting started
instructions to advanced topics.

• Product Manuals—A comprehensive, searchable library of the latest
editions of National Instruments hardware and software product
manuals.

• Hardware Reference Database—A searchable database containing
brief hardware descriptions, mechanical drawings, and helpful images
of jumper settings and connector pinouts.

• Application Notes—A library with more than 100 short papers
addressing specific topics such as creating and calling DLLs,
developing your own instrument driver software, and porting
applications between platforms and operating systems.

Appendix B Technical Support Resources

DASYLab to LabVIEW Migration Guide B-2 www.natinst.com

Software-Related Resources
• Instrument Driver Network—A library with hundreds of instrument

drivers for control of standalone instruments via GPIB, VXI, or serial
interfaces. You also can submit a request for a particular instrument
driver if it does not already appear in the library.

• Example Programs Database—A database with numerous,
non-shipping example programs for National Instruments
programming environments. You can use them to complement the
example programs that are already included with National Instruments
products.

• Software Library—A library with updates and patches to application
software, links to the latest versions of driver software for National
Instruments hardware products, and utility routines.

Worldwide Support
National Instruments has offices located around the globe. Many branch
offices maintain a Web site to provide information on local services. You
can access these Web sites from www.natinst.com/worldwide.

If you have trouble connecting to our Web site, please contact your local
National Instruments office or the source from which you purchased your
National Instruments product(s) to obtain support.

For telephone support in the United States, dial 512 795 8248. For
telephone support outside the United States, contact your local branch
office:

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20,
Brazil 011 284 5011, Canada (Ontario) 905 785 0085,
Canada (Québec) 514 694 8521, China 0755 3904939,
Denmark 45 76 26 00, Finland 09 725 725 11, France 01 48 14 24 24,
Germany 089 741 31 30, Hong Kong 2645 3186, India 91805275406,
Israel 03 6120092, Italy 02 413091, Japan 03 5472 2970,
Korea 02 596 7456, Mexico (D.F.) 5 280 7625,
Mexico (Monterrey) 8 357 7695, Netherlands 0348 433466,
Norway 32 27 73 00, Singapore 2265886, Spain (Madrid) 91 640 0085,
Spain (Barcelona) 93 582 0251, Sweden 08 587 895 00,
Switzerland 056 200 51 51, Taiwan 02 2377 1200,
United Kingdom 01635 523545

© National Instruments Corporation G-1 DASYLab to LabVIEW Migration Guide

Glossary

A
array Ordered, indexed list of data elements of the same type.

Attribute Node Special block diagram nodes you can use to control the appearance and
functionality of controls and indicators.

auto-indexing Capability of loop structures to disassemble and assemble arrays at their
borders. As an array enters a loop with auto-indexing enabled, the loop
automatically disassembles it with scalars extracted from one-dimensional
arrays, one-dimensional arrays extracted from two-dimensional arrays, and
so on. Loops assemble data into arrays as they exit the loop according to the
reverse of the same procedure.

B
block diagram A pictorial description or representation of a program or algorithm. The

block diagram, which consists of executable icons called nodes and wires
that carry data between the nodes, is the source code for the VI.

Boolean controls
and indicators

Front panel objects used to manipulate and display Boolean (TRUE or
FALSE) data.

Bundle node Function that creates clusters from various types of elements.

C
Case structure Conditional branching control structure, which executes one and only one

of its subdiagrams based on its input. It is the combination of the IF, THEN,
ELSE, and CASE statements in control flow languages.

cluster Set of ordered, unindexed data elements of any data type including
numeric, Boolean, string, array, or cluster. The elements must be all
controls or all indicators.

conditional terminal The terminal of a While Loop that contains a Boolean value that determines
whether the VI performs another iteration.

coercion dot Gray dot on a terminal indicating that one of two terminals wired together
has been converted to match the data type of the other.

Glossary

DASYLab to LabVIEW Migration Guide G-2 www.natinst.com

conditional retrieval A method of triggering in which you to simulate an analog trigger using
software. Also called software triggering.

conditional terminal Terminal of a While Loop that contains a Boolean value that determines
whether the VI performs another iteration.

control Front panel object for entering data to a VI interactively or to a subVI
programmatically.

Controls palette Palette containing front panel controls and indicators.

count terminal Terminal of a For Loop whose value determines the number of times a
For Loop executes its subdiagram.

D
data flow Programming system consisting of executable nodes in which nodes

execute only when they have received all the required input data and
produce output automatically when they have executed. LabVIEW is a
dataflow system.

data type Format for information. In BridgeVIEW, acceptable data types for tag
configuration are analog, discrete, bit array, and string. In LabVIEW,
acceptable data types for most functions are numeric, array, string, and
cluster.

datalog file File that stores data as a sequence of records of a single, arbitrary data
type that you specify when you create the file. While all the records in a
datalog file must be of a single type, that type can be complex; for instance,
each record can be a cluster containing a string, a number, and an array.

E
Enable Indexing Option that allows you to build a set of data to be released at the termination

of a While Loop. With indexing disabled, a While Loop releases only the
final data point generated within the loop.

F
For Loop Iterative loop structure that executes its subdiagram a set number of times.

Equivalent to conventional code: For i = 0 to n – 1, do....

front panel The interactive user interface of a VI. Modeled from the front panel of
physical instruments, it is composed of switches, slides, meters, graphs,
charts, gauges, LEDs, and other controls and indicators.

Glossary

© National Instruments Corporation G-3 DASYLab to LabVIEW Migration Guide

function Built-in execution element, comparable to an operator, function, or
statement in a conventional language.

Functions palette Palette containing block diagram structures, constants, communication
features, and VIs.

G
G The graphical programming language used to develop LabVIEW

applications.

GPIB General Purpose Interface Bus is the common name for the
communications interface system defined in ANSI/IEEE
Standard 488.1-1987 and ANSI/IEEE Standard 488.2-1987.
Hewlett-Packard, the inventor of the bus, calls it the HP-IB.

global variable Non-reentrant subVI with local memory that uses an uninitialized
shift register to store data from one execution to the next. The memory
of copies of these subVIs is shared and thus can be used to pass global
data between them.

I
I/O Input/output. Transfer of data to or from a computer system involving

communications channels, operator input devices, and/or data acquisition
and control interfaces.

indicator Front panel object that displays output.

instrument driver VI that controls a programmable instrument.

iteration terminal Terminal of a For Loop or While Loop that contains the current number of
completed iterations.

L
label Text object used to name or describe other objects or regions on the front

panel or block diagram.

list box Box within a dialog box listing all available choices for a command.
For example, a list of file names on a disk.

local variable Variable that enables you to read or write to one of the controls or indicators
on the front panel of your VI.

Glossary

DASYLab to LabVIEW Migration Guide G-4 www.natinst.com

M
menu bar Horizontal bar that lists the names of the main menus of an application.

The menu bar appears below the title bar of a window. Each application has
a menu bar that is distinct for that application, although some menus
(and commands) are common to many applications.

N
node Execution element of a block diagram, such as a function, structure, or

subVI. See also data flow, wire.

numeric controls
and indicators

Front panel objects used to manipulate and display or input and output
numeric data.

P
palette A display of icons that represent possible options. See also Controls palette,

Functions palette, subpalette, Tools palette.

polymorphism Ability of a node to adjust automatically to data of different representation,
type, or structure.

pop up To call a special menu by right-clicking an object.

pop-up menu Menu accessed by right-clicking an object.

R
refnum Identifier of a DDE conversation or open file that can be referenced by

related VIs.

representation Subtype of the numeric data type. Representations include signed and
unsigned byte, word, and long integers, as well as single-, double-, and
extended-precision floating-point numbers, both real and complex.

S
scalar Number capable of being represented by a point on a scale. A single value

as opposed to an array. Scalar Booleans and clusters are explicitly singular
instances of their respective data types.

Sequence structure Program control structure that executes its subdiagrams in numeric order.

Glossary

© National Instruments Corporation G-5 DASYLab to LabVIEW Migration Guide

shift register Optional mechanism in loop structures used to pass the value of a variable
from one iteration of a loop to a subsequent iteration.

structure Program control element, such as a While Loop.

subpalette A palette contained in an icon of another palette.

subVI VI used in the block diagram of another VI; comparable to a subroutine.

T
terminal Object or region on a node through which data passes.

Tools palette Palette containing the tools you can use to edit and debug front panel and
block diagram objects.

toolbar Bar containing command buttons you can use to run and debug VIs.

V
VI See virtual instrument.

VI library Special file that contains a collection of related VIs for a specific use.

virtual instrument A program in the graphical programming language G that models the
appearance and function of a physical instrument.

W
waveform chart An indicator that plots data points at a certain rate.

While loop Loop structure that repeats a section of code until a condition is met.
Comparable to a Do loop or a Repeat-Until loop in conventional
programming languages.

wire Data path between nodes. See also data flow.

Wiring tool Tool used to define data paths between terminals. Resembles a spool
of wire.

	DASYLab to LabVIEW Migration Guide
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Conventions Used in This Manual
	Related Documentation

	Chapter 1 Introduction to DASYLab and LabVIEW
	Installation
	DASYLab to LabVIEW Migration Toolkit

	Comparison of DASYLab and LabVIEW
	Virtual Instruments
	SubVIs
	Front Panel
	Tools
	Controls and Indicators

	Block Diagram

	Running a VI
	LabVIEW Terminology

	Chapter 2 LabVIEW Programming
	Data Types
	Data Type Conversion
	Polymorphism
	Simple Data Types
	Arrays
	Clusters
	Graphs

	Enumerations
	Paths and�Reference�Numbers

	Programming Structures
	While Loop
	For Loop
	Indexing

	Case Structure
	Sequence Structure

	Local and Global Variables
	Local Variables
	Global Variables

	Chapter 3 Migrating from DASYLab to LabVIEW
	Basics of Converting a Program
	DASYLab Experiment Execution
	Passing DASYLab Data Blocks
	Error Cluster

	Input/Output Operations
	Data Acquisition
	Simple LabVIEW DAQ Applications

	Converting DASYLab Diagram Flow Control to LabVIEW
	Continuous Data Processing—Shift Registers
	Example: Calculating the Running�Maximum�of�a�Signal

	Triggering
	Data Acquisition Triggering

	Printing
	Report Generation
	File I/O
	Messages
	Actions
	Network Control and Interaction
	Multiple Layouts and Window Arrangements

	LabVIEW Tools Beyond DASYLab
	Menu Bars
	Open Network Communication
	ActiveX Controls
	DLLs
	Instrument Drivers

	Appendix A DASYLab File I/O Functions
	Read DASYLab DDF File VI
	Read All From DASYLab DDF VI
	Read DASYLab I32 File VI
	Write DASYLab I32 File VI

	Appendix B Technical Support Resources
	Glossary
	A-C
	D-F
	G-L
	M-S
	T-W

	Figures
	Figure 1-1. Reuse of Digital Thermometer VI as a SubVI in Temperature Chart VI
	Figure 1-2. Controls and Indicators on the Front Panel and Block Diagram
	Figure 2-1. Bundling Data to a Waveform Cluster and Waveform Graph
	Figure 2-2. Example of an Enumerated Data Type
	Figure 2-3. While Loop with Terminals
	Figure 2-4. Example of While Loop Used in an Application
	Figure 2-5. For Loop with Terminals
	Figure 2-6. Case Structures
	Figure 2-7. Sequence Structure with All Frames Shown
	Figure 3-1. DASYLab Simple Generator Flowchart
	Figure 3-2. LabVIEW Simple Generator VI
	Figure 3-3. Timescaled Waveform VI
	Figure 3-4. Timescaled Waveform VI with Added System Clock Time Stamp
	Figure 3-5. Applying Separate Scaling to Different Channels of Data
	Figure 3-6. Error Cluster and Set of File I/O VIs Using the Error Cluster
	Figure 3-7. Easy I/O DAQ Analog Input Application
	Figure 3-8. DASYLab Flowchart Finding the Running Maximum of a Signal
	Figure 3-9. LabVIEW Block Diagram Calculating the Running Maximum of a Signal
	Figure 3-10. VI and SubVI to Calculate a Running Maximum

	Table
	Table 1-1. DASYLab and LabVIEW Terminology

	Activity
	Activity 3-1. Converting a DASYLab Experiment to LabVIEW

